
Package: AirMonitor (via r-universe)
October 26, 2024

Type Package

Version 0.4.2

Title Air Quality Data Analysis

Maintainer Jonathan Callahan <jonathan.s.callahan@gmail.com>

Description Utilities for working with hourly air quality monitoring
data with a focus on small particulates (PM2.5). A compact data
model is structured as a list with two dataframes. A 'meta'
dataframe contains spatial and measuring device metadata
associated with deployments at known locations. A 'data'
dataframe contains a 'datetime' column followed by columns of
measurements associated with each ``device-deployment''.
Algorithms to calculate NowCast and the associated Air Quality
Index (AQI) are defined at the US Environmental Projection
Agency AirNow program:
<https://document.airnow.gov/
technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf>.

License GPL-3

URL https://github.com/MazamaScience/AirMonitor,

https://mazamascience.github.io/AirMonitor/

BugReports https://github.com/MazamaScience/AirMonitor/issues

Depends R (>= 4.0.0)

Imports dplyr, dygraphs, leaflet, lubridate, magrittr, MazamaCoreUtils
(>= 0.5.2), MazamaRollUtils (>= 0.1.3), MazamaTimeSeries (>=
0.2.16), readr, rlang (>= 1.0.0), stringr, tidyselect, xts

Suggests knitr, markdown, testthat, rmarkdown, roxygen2

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.1

Repository https://mazamascience.r-universe.dev

1

https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf
https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf
https://github.com/MazamaScience/AirMonitor
https://mazamascience.github.io/AirMonitor/
https://github.com/MazamaScience/AirMonitor/issues

2 Contents

RemoteUrl https://github.com/mazamascience/airmonitor

RemoteRef HEAD

RemoteSha 15342875337bfda31402d91821b281b5721adc7e

Contents
addAQILegend . 3
addAQILines . 4
addAQIStackedBar . 5
addShadedNight . 6
AirFire_S3_archiveBaseUrl . 7
airnow_loadAnnual . 7
airnow_loadDaily . 9
airnow_loadLatest . 10
airnow_loadMonthly . 11
airsis_loadAnnual . 12
airsis_loadDaily . 14
airsis_loadLatest . 15
aqiCategories . 17
aqiColors . 18
Camp_Fire . 19
Carmel_Valley . 20
CONUS . 21
coreMetadataNames . 21
epa_aqs_loadAnnual . 22
monitor_aqi . 23
monitor_arrange . 24
monitor_bestTimezone . 25
monitor_check . 25
monitor_collapse . 26
monitor_combine . 27
monitor_dailyBarplot . 29
monitor_dailyStatistic . 30
monitor_dailyThreshold . 32
monitor_distinct . 33
monitor_dropEmpty . 34
monitor_dygraph . 34
monitor_filterByDistance . 35
monitor_filterDate . 36
monitor_filterDatetime . 38
monitor_filterMeta . 40
monitor_fromPWFSLSmoke . 41
monitor_getCurrentStatus . 42
monitor_getDataFrame . 44
monitor_getDistance . 44
monitor_isEmpty . 46
monitor_isValid . 46

addAQILegend 3

monitor_leaflet . 47
monitor_load . 49
monitor_loadAnnual . 50
monitor_loadDaily . 52
monitor_loadLatest . 53
monitor_mutate . 55
monitor_nowcast . 56
monitor_pull . 57
monitor_replaceValues . 58
monitor_select . 59
monitor_selectWhere . 59
monitor_setTimeAxis . 60
monitor_slice_head . 62
monitor_timeInfo . 63
monitor_timeRange . 64
monitor_timeseriesPlot . 65
monitor_toAQCTable . 67
monitor_toCSV . 68
monitor_toPWFSLSmoke . 69
monitor_trimDate . 70
NW_Megafires . 71
pollutantNames . 72
QC_invalidateConsecutiveSuspectValues . 72
US_52 . 73
US_AQI . 73
wrcc_loadAnnual . 75
wrcc_loadDaily . 76
wrcc_loadLatest . 78

Index 80

addAQILegend Add an AQI legend to a map

Description

This function is a convenience wrapper around graphics::legend(). It will show the AQI colors
and names by default if col and legend are not specified.

AQI categories are arranged with lower levels at the bottom of the legend to match the arrangement
in the plot. This is different from the default "reading order" so you may wish to reverse the order
of user supplied arguments with rev() .

4 addAQILines

Usage

addAQILegend(
x = "topright",
y = NULL,
pollutant = c("PM2.5", "CO", "OZONE", "PM10", "AQI"),
palette = c("EPA", "subdued", "deuteranopia"),
languageCode = c("eng", "spa"),
NAAQS = c("PM2.5_2024", "PM2.5"),
...

)

Arguments

x x Coordinate passed on to the legend() command.

y y Coordinate passed on to the legend() command.

pollutant EPA AQS criteria pollutant.

palette Named color palette to use for AQI categories.

languageCode ISO 639-2 alpha-3 language code.

NAAQS Version of NAAQS levels to use. See Note.

... Additional arguments to be passed to legend().

Value

A list with components rect and text is returned invisbly. (See legend.)

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

addAQILines Add AQI lines to a plot

Description

Draws AQI lines across a plot at the levels appropriate for The monitor_timeseriesPlot function uses
this function internally when specifying addAQI = TRUE. pollutant.

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

addAQIStackedBar 5

Usage

addAQILines(
pollutant = c("PM2.5", "CO", "OZONE", "PM10", "AQI"),
palette = c("EPA", "subdued", "deuteranopia"),
NAAQS = c("PM2.5_2024", "PM2.5"),
...

)

Arguments

pollutant EPA AQS criteria pollutant.

palette Named color palette to use for AQI categories.

NAAQS Version of NAAQS levels to use. See Note.

... additional arguments to be passed to abline()

Value

No return value, called to add lines to a time series plot.

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

addAQIStackedBar Create stacked AQI bar

Description

Draws a stacked bar indicating AQI levels on one side of a plot The monitor_timeseriesPlot function
uses this function internally when specifying addAQI = TRUE.

Usage

addAQIStackedBar(
pollutant = c("PM2.5", "CO", "OZONE", "PM10", "AQI"),
palette = c("EPA", "subdued", "deuteranopia"),
width = 0.01,
height = 1,
pos = c("left", "right"),
NAAQS = c("PM2.5_2024", "PM2.5")

)

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

6 addShadedNight

Arguments

pollutant EPA AQS criteria pollutant.

palette Named color palette to use for AQI categories.

width Width of the bar as a fraction of the width of the plot area.

height Height of the bar as a fraction of the height of the plot area.

pos Position of the stacked bar relative to the plot.

NAAQS Version of NAAQS levels to use. See Note.

Value

No return value, called to add color bars to a time series plot.

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

addShadedNight Add nighttime shading to a timeseries plot

Description

Draw shading rectangles on a plot to indicate nighttime hours. The monitor_timeseriesPlot function
uses this function internally when specifying shadedNight = TRUE.

Usage

addShadedNight(timeInfo, col = adjustcolor("black", 0.1))

Arguments

timeInfo dataframe as returned by MazamaTimeSeries::monitor_timeInfo()

col Color used to shade nights.

Value

No return value, called to add day/night shading to a timeseries plot.

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

AirFire_S3_archiveBaseUrl 7

AirFire_S3_archiveBaseUrl

USFS maintained archive base URL

Description

The US Forest Service AirFire group maintains an archive of processed monitoring data. The base
URL for this archive is used as the default in all ~_load() functions.

"https://airfire-data-exports.s3.us-west-2.amazonaws.com/monitoring/v2"

Usage

AirFire_S3_archiveBaseUrl

Format

A url

Details

AirFire_S3_archiveBaseUrl

airnow_loadAnnual Load annual AirNow monitoring data

Description

Loads pre-generated .rda files containing hourly AirNow data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function contain a single year’s worth of data

For the most recent data in the last 10 days, use airnow_loadLatest().

For daily updates covering the most recent 45 days, use airnow_loadDaily().

For archival data for a specific month, use airnow_loadMonthly().

Pre-processed AirNow exists for the following parameters:

1. PM2.5

8 airnow_loadAnnual

Usage

airnow_loadAnnual(
year = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
parameterName = "PM2.5"

)

Arguments

year Year [YYYY].

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.

parameterName One of the EPA AQS criteria parameter names.

Value

A mts_monitor object with AirNow data. (A list with meta and data dataframes.)

See Also

airnow_loadDaily

airnow_loadLatest

airnow_loadMonthly

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

See https://en.wikipedia.org/wiki/2017_Montana_wildfires

Daily Barplot of Montana wildfires
airnow_loadAnnual(2017) \

monitor_filter(stateCode == "MT") \
monitor_filterDate(20170701, 20170930, timezone = "America/Denver") \
monitor_dailyStatistic() \
monitor_timeseriesPlot(
ylim = c(0, 300),
xpd = NA,
addAQI = TRUE,
main = "Montana 2017 -- AirNow Daily Average PM2.5"

airnow_loadDaily 9

)

}, silent = FALSE)

End(Not run)

airnow_loadDaily Load daily AirNow monitoring data

Description

Loads pre-generated .rda files containing hourly AirNow data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated once per day and contain data for the previous 45 days.

For the most recent data in the last 10 days, use airnow_loadLatest().

For data extended more than 45 days into the past, use airnow_loadAnnual().

Pre-processed AirNow exists for the following parameters:

1. PM2.5

2. PM2.5_nowcast

Usage

airnow_loadDaily(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
parameterName = "PM2.5"

)

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.

parameterName One of the EPA AQS criteria parameter names.

Value

A mts_monitor object with AirNow data. (A list with meta and data dataframes.)

10 airnow_loadLatest

See Also

airnow_loadAnnual

airnow_loadLatest

airnow_loadMonthly

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

airnow_loadDaily() \
monitor_filter(stateCode == "WA") \
monitor_leaflet()

}, silent = FALSE)

End(Not run)

airnow_loadLatest Load most recent AirNow monitoring data

Description

Loads pre-generated .rda files containing the most recent AirNow data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated multiple times an hour and contain data for the previous
10 days.

For daily updates covering the most recent 45 days, use airnow_loadDaily().

For data extended more than 45 days into the past, use airnow_loadAnnual().

Pre-processed AirNow exists for the following parameters:

1. PM2.5
2. PM2.5_nowcast

Usage

airnow_loadLatest(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
parameterName = "PM2.5"

)

airnow_loadMonthly 11

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.
archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.
parameterName One of the EPA AQS criteria parameter names.

Value

A mts_monitor object with AirNow data. (A list with meta and data dataframes.)

See Also

airnow_loadAnnual

airnow_loadDaily

airnow_loadMonthly

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

airnow_loadLatest() \
monitor_filter(stateCode == "WA") \
monitor_leaflet()

}, silent = FALSE)

End(Not run)

airnow_loadMonthly Load monthly AirNow monitoring data

Description

Loads pre-generated .rda files containing hourly AirNow data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function contain a single month’s worth of data

For the most recent data in the last 10 days, use airnow_loadLatest().

For daily updates covering the most recent 45 days, use airnow_loadDaily().

For data extended more than 45 days into the past, use airnow_loadAnnual().

Pre-processed AirNow exists for the following parameters:

12 airsis_loadAnnual

1. PM2.5

Usage

airnow_loadMonthly(
monthStamp = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
parameterName = "PM2.5"

)

Arguments

monthStamp Year-month [YYYYmm].
archiveBaseUrl Base URL for monitoring v2 data files.
archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.
parameterName One of the EPA AQS criteria parameter names.

Value

A mts_monitor object with AirNow data. (A list with meta and data dataframes.)

airsis_loadAnnual Load annual AIRSIS monitoring data

Description

Loads pre-generated .rda files containing annual AIRSIS data.
If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.
Current year files loaded by this function are updated once per week.
For the most recent data in the last 10 days, use airsis_loadLatest().
For daily updates covering the most recent 45 days, use airsis_loadDaily().

Usage

airsis_loadAnnual(
year = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
QC_removeSuspectData = TRUE

)

airsis_loadAnnual 13

Arguments

year Year [YYYY].

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.
QC_removeSuspectData

Removes monitors determined to be misbehaving.

Value

A mts_monitor object with AIRSIS data. (A list with meta and data dataframes.)

Note

Some older AIRSIS timeseries contain only values of 0, 1000, 2000, 3000, ... ug/m3. Data from
these deployments pass instrument-level QC checks but these timeseries generally do not repre-
sent valid data and should be removed. With QC_removeSuspectData = TRUE (the default), data is
checked and periods reporting only values of 0:10 * 1000 ug/m3 are invalidated.

Only those personally familiar with the individual instrument deployments should work with the
"suspect" data.

See Also

airsis_loadDaily

airsis_loadLatest

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

See https://en.wikipedia.org/wiki/Camp_Fire_(2018)

AIRSIS monitors during the Camp Fire
airsis_loadAnnual(2018) \

monitor_filter(stateCode == "CA") \
monitor_filterDate(20181101, 20181201) \
monitor_dropEmpty() \
monitor_leaflet()

}, silent = FALSE)

End(Not run)

14 airsis_loadDaily

airsis_loadDaily Load daily AIRSIS monitoring data

Description

Loads pre-generated .rda files containing daily AIRSIS data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated once per day and contain data for the previous 45 days.

For the most recent data in the last 10 days, use airsis_loadLatest().

For data extended more than 45 days into the past, use airsis_loadAnnual().

Usage

airsis_loadDaily(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
QC_removeSuspectData = TRUE

)

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.
QC_removeSuspectData

Removes monitors determined to be misbehaving.

Value

A mts_monitor object with AIRSIS data. (A list with meta and data dataframes.)

Note

Some older AIRSIS timeseries contain only values of 0, 1000, 2000, 3000, ... ug/m3. Data from
these deployments pass instrument-level QC checks but these timeseries generally do not repre-
sent valid data and should be removed. With QC_removeSuspectData = TRUE (the default), data is
checked and periods reporting only values of 0:10 * 1000 ug/m3 are invalidated.

Only those personally familiar with the individual instrument deployments should work with the
"suspect" data.

airsis_loadLatest 15

See Also

airsis_loadAnnual

airsis_loadLatest

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

airsis_loadDaily()\ %>\
monitor_filter(stateCode == "CA") \
monitor_leaflet()

}, silent = FALSE)

End(Not run)

airsis_loadLatest Load most recent AIRSIS monitoring data

Description

Loads pre-generated .rda files containing the most recent AIRSIS data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated multiple times an hour and contain data for the previous
10 days.

For daily updates covering the most recent 45 days, use airsis_loadDaily().

For data extended more than 45 days into the past, use airsis_loadAnnual().

Usage

airsis_loadLatest(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
QC_removeSuspectData = TRUE

)

16 airsis_loadLatest

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.

QC_negativeValues

Type of QC to apply to negative values.

QC_removeSuspectData

Removes monitors determined to be misbehaving.

Value

A mts_monitor object with AIRSIS data. (A list with meta and data dataframes.)

Note

Some older AIRSIS timeseries contain only values of 0, 1000, 2000, 3000, ... ug/m3. Data from
these deployments pass instrument-level QC checks but these timeseries generally do not repre-
sent valid data and should be removed. With QC_removeSuspectData = TRUE (the default), data is
checked and periods reporting only values of 0:10 * 1000 ug/m3 are invalidated.

Only those personally familiar with the individual instrument deployments should work with the
"suspect" data.

See Also

airsis_loadAnnual

airsis_loadDaily

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

airsis_loadLatest()\ %>\
monitor_filter(stateCode == "CA") \
monitor_leaflet()

}, silent = FALSE)

End(Not run)

aqiCategories 17

aqiCategories Generate AQI categories

Description

This function converts hourly PM2.5 measurements into AQI category levels. These levels can then
be converted to colors or names using the arrays found in US_AQI.

Usage

aqiCategories(
x,
pollutant = c("PM2.5", "AQI", "CO", "NO", "OZONE", "PM10", "SO2"),
NAAQS = c("PM2.5_2024", "PM2.5"),
conversionArray = NULL

)

Arguments

x Vector or matrix of PM2.5 values or an mts_monitor object.
pollutant EPA AQS criteria pollutant.
NAAQS Version of NAAQS levels to use. See Note.
conversionArray

Array of six text or other values to return instead of integers.

Details

By default, return values will be integers in the range 1:6 or NA. The conversionArray param-
eter can be used to convert these integers into whatever is specified in the first six elements of
conversionArray. A typical usage would be: conversionArray = US_AQI$names_eng.

Value

A vector or matrix of AQI category indices in the range 1:6.

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

See Also

aqiColors

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

18 aqiColors

Examples

library(AirMonitor)

Lane County, Oregon AQSIDs all begin with "41039"
LaneCounty <-

NW_Megafires %>%
monitor_filter(stringr::str_detect(AQSID, '^41039')) %>%
monitor_filterDate(20150822, 20150823)

LaneCounty %>%
aqiCategories()

LaneCounty %>%
aqiCategories(conversionArray = US_AQI$names_eng)

aqiColors Generate AQI colors

Description

This function uses the leaflet::colorBin() function to return a vector or matrix of colors derived
from data values.

Usage

aqiColors(
x,
pollutant = c("PM2.5", "AQI", "CO", "NO", "OZONE", "PM10", "SO2"),
palette = c("EPA", "subdued", "deuteranopia"),
na.color = NA,
NAAQS = c("PM2.5_2024", "PM2.5")

)

Arguments

x Vector or matrix of PM2.5 values or an mts_monitor object.

pollutant EPA AQS criteria pollutant.

palette Named color palette to use for AQI categories.

na.color Color assigned to missing values.

NAAQS Version of NAAQS levels to use. See Note.

Value

A vector or matrix of AQI colors to be used in maps and plots.

Camp_Fire 19

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

See Also

aqiCategories

Examples

library(AirMonitor)

Fancy plot based on pm2.5 values
pm2.5 <- Carmel_Valley$data[,2]
Carmel_Valley %>%

monitor_timeseriesPlot(
shadedNight = TRUE,
pch = 16,
cex = pmax(pm2.5 / 100, 0.5),
col = aqiColors(pm2.5),
opacity = 0.8

)

Camp_Fire Camp Fire example dataset

Description

The Camp_Fire dataset provides a quickly loadable version of a mts_monitor object for practicing
and code examples.

Usage

Camp_Fire

Format

A mts_monitor object with 360 rows and 134 columns of data.

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

20 Carmel_Valley

Details

The 2018 Camp Fire was the deadliest and most destructive wildfire in California’s history, and the
most expensive natural disaster in the world in 2018 in terms of insured losses. The fire caused at
least 85 civilian fatalities and injured 12 civilians and five firefighters. It covered an area of 153,336
acres and destroyed more than 18,000 structures, most with the first 4 hours. Smoke from the fire
resulted in the worst air pollution ever for the San Francisco Bay Area and Sacramento Valley.

This dataset was was generated on 2022-10-12 by running:

library(AirMonitor)

Camp_Fire <-
monitor_loadAnnual(2018) %>%
monitor_filter(stateCode == 'CA') %>%
monitor_filterDate(
startdate = 20181108,
enddate = 20181123,
timezone = "America/Los_Angeles"

) %>%
monitor_dropEmpty()

save(Camp_Fire, file = "data/Camp_Fire.rda")

Carmel_Valley Carmel Valley example dataset

Description

The Carmel_Valley dataset provides a quickly loadable version of a mts_monitor object for prac-
ticing and code examples.

Usage

Carmel_Valley

Format

A mts_monitor object with 576 rows and 2 columns of data.

Details

In August of 2016, the Soberanes fire in California burned along the Big Sur coast. At the time,
it was the most expensive wildfire in US history. This dataset contains PM2.5 monitoring data for
the monitor in Carmel Valley which shows heavy smoke as well as strong diurnal cycles associated
with sea breezes. Data are stored as a mts_monitor object and are used in some examples in the
package documentation.

This dataset was generated on 2022-10-12 by running:

CONUS 21

library(AirMonitor)

Carmel_Valley <-
airnow_loadAnnual(2016) %>%
monitor_filterMeta(deviceDeploymentID == "a9572a904a4ed46d_840060530002") %>%
monitor_filterDate(20160722, 20160815)

save(Carmel_Valley, file = "data/Carmel_Valley.rda")

CONUS CONUS state codes

Description

State codes for the 48 contiguous states +DC that make up the CONtinental US.

CONUS <- c("AL","AZ","AR","CA","CO","CT","DE","FL","GA", "ID","IL","IN","IA","KS","KY","LA","ME","MD",
"MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ", "NM","NY","NC","ND","OH","OK","OR","PA","RI","SC",
"SD","TN","TX","UT","VT","VA","WA","WV","WI","WY", "DC")

Usage

CONUS

Format

A vector with 49 elements

Details

CONUS state codes

coreMetadataNames Names of standard metadata columns

Description

Vector of names of the required monitor$meta columns. These represent metadata columns that
must exist in every valid mts_monitor object. Any number of additional columns may also be
present.

Usage

coreMetadataNames

22 epa_aqs_loadAnnual

Format

A vector of character strings

Details

coreMetadataNames

Examples

print(coreMetadataNames, width = 80)

epa_aqs_loadAnnual Load annual AirNow monitoring data

Description

Loads pre-generated .rda files containing hourly AirNow data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function contain a single year’s worth of data.

Pre-processed AirNow exists for the following parameter codes:

1. 88101 – PM2.5 FRM/FEM Mass

2. 88502 – PM2.5 non FRM/FEM Mass

Specifying parameterCode = "PM2.5" will merge records from both sources.

Usage

epa_aqs_loadAnnual(
year = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
parameterCode = c("PM2.5", "88101", "88502")

)

Arguments

year Year [YYYY].

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.

parameterCode One of the EPA AQS criteria parameter codes.

monitor_aqi 23

Value

A mts_monitor object with EPA AQS data. (A list with meta and data dataframes.)

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

See https://en.wikipedia.org/wiki/2017_Montana_wildfires

Daily Barplot of Montana wildfires
epa_aqs_loadAnnual(2015) \

monitor_filter(stateCode == "WA") \
monitor_filterDate(20150724, 20150907) \
monitor_dailyStatistic() \
monitor_timeseriesPlot(
main = "Washington 2015 -- AirNow Daily Average PM2.5"

)

}, silent = FALSE)

End(Not run)

monitor_aqi Calculate hourly NowCast-based AQI values

Description

Nowcast and AQI algorithms are applied to the data in the monitor object. A modified mts_monitor
object is returned whre values have been replaced with their Air Quality Index equivalents. See
monitor_nowcast.

Usage

monitor_aqi(
monitor,
version = c("pm", "pmAsian", "ozone"),
includeShortTerm = FALSE,
NAAQS = c("PM2.5_2024", "PM2.5")

)

Arguments

monitor mts_monitor object.

version Name of the type of nowcast algorithm to be used.

24 monitor_arrange

includeShortTerm

Logical specifying whether to alcluate preliminary NowCast values starting with
the 2nd hour.

NAAQS Version of NAAQS levels to use. See Note.

Value

A modified mts_monitor object containing AQI values. (A list with meta and data dataframes.)

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

References

https://en.wikipedia.org/wiki/Nowcast_(Air_Quality_Index)

https://www.airnow.gov/aqi/aqi-basics/

monitor_arrange Order mts_monitor time series by metadata values

Description

The variable(s) in ... are used to specify columns of monitor$meta to use for ordering. Under the
hood, this function uses arrange on monitor$meta and then reorders monitor$data to match.

Usage

monitor_arrange(monitor, ...)

Arguments

monitor mts_monitor object.

... variables in mts$meta.

Value

A reorderd version of the incoming mts time series object. (A list with meta and data dataframes.)

See Also

monitor_select

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm
https://en.wikipedia.org/wiki/Nowcast_(Air_Quality_Index)
https://www.airnow.gov/aqi/aqi-basics/

monitor_bestTimezone 25

Examples

library(AirMonitor)

Camp_Fire$meta$elevation[1:10]

byElevation <-
Camp_Fire %>%
monitor_arrange(elevation)

byElevation$meta$elevation[1:10]

monitor_bestTimezone Return the most common timezone

Description

Evaluates all timezones in monitor and returns the most common one. In the case of a tie, the
alphabetically first one is returned.

Usage

monitor_bestTimezone(monitor = NULL)

Arguments

monitor mts_monitor object.

Value

A valid base::OlsonNames() timezone.

monitor_check Check an mts_monitor object for validity.

Description

Checks on the validity of an mts_monitor object. If any test fails, this function will stop with a
warning message.

Usage

monitor_check(monitor)

Arguments

monitor mts_monitor object.

26 monitor_collapse

Value

Invisibly returns TRUE if mts_monitor has the correct structure. Stops with an error message other-
wise.

monitor_collapse Collapse an mts_monitor object into a single time series

Description

Collapses data from all time series in a mts_monitor into a single-time series mts_monitor object
using the function provided in the FUN argument. The single-time series result will be located at the
mean longitude and latitude unless longitude and latitude parameters are specified.

Any columns of monitor$meta that are constant across all records will be retained in the returned
mts_monitor meta dataframe.

The core metadata associated with this location (e.g. countryCode, stateCode, timezone, ...)
will be determined from the most common (or average) value found in monitor$meta. This will
be a reasonable assumption for the vast majority of intended use cases where data from multiple
instruments in close proximity are averaged together.

Usage

monitor_collapse(
monitor,
longitude = NULL,
latitude = NULL,
deviceID = "generatedID",
FUN = mean,
na.rm = TRUE,
...

)

Arguments

monitor mts_monitor object.

longitude Longitude of the collapsed time series.

latitude Latitude of the collapsed time series.

deviceID Device identifier for the collapsed time series.

FUN Function used to collapse multiple time series.

na.rm Logical specifying whether NA values should be ignored when FUN is applied.

... additional arguments to be passed on to the apply() function.

Value

A mts_monitor object representing a single time series. (A list with meta and data dataframes.)

monitor_combine 27

Note

After FUN is applied, values of +/-Inf and NaN are converted to NA. This is a convenience for the
common case where FUN = min/max or FUN = mean and some of the time steps have all missing
values. See the R documentation for min for an explanation.

Examples

library(AirMonitor)

Lane County, Oregon AQSIDs all begin with "41039"
LaneCounty <-

NW_Megafires %>%
monitor_filter(stringr::str_detect(AQSID, '^41039')) %>%
monitor_filterDate(20150821, 20150828)

Get min/max for all monitors
LaneCounty_min <- monitor_collapse(LaneCounty, deviceID = 'LaneCounty_min', FUN = min)
LaneCounty_max <- monitor_collapse(LaneCounty, deviceID = 'LaneCounty_max', FUN = max)

Create plot
monitor_timeseriesPlot(

LaneCounty,
shadedNight = TRUE,
main = "Lane County Range of PM2.5 Values"

)

Add min/max lines
monitor_timeseriesPlot(LaneCounty_max, col = 'red', type = 's', add = TRUE)
monitor_timeseriesPlot(LaneCounty_min, col = 'blue', type = 's', add = TRUE)

monitor_combine Combine multiple mts_monitor objects

Description

Create a combined mts_monitor from any number of mts_monitor objects or from a list of mts_monitor
objects. The resulting mts_monitor object with contain all deviceDeploymentIDs found in any in-
coming mts_monitor and will have a regular time axis covering the the entire range of incoming
data.

If incoming time ranges are tempporally non-contiguous, the resulting mts_monitor will have gaps
filled with NA values.

An error is generated if the incoming mts_monitor objects have non-identical metadata for the same
deviceDeploymentID unless replaceMeta = TRUE.

28 monitor_combine

Usage

monitor_combine(
...,
replaceMeta = FALSE,
overlapStrategy = c("replace all", "replace na")

)

Arguments

... Any number of valid mts_monitor objects or a list of objects.

replaceMeta Logical specifying whether to allow replacement of metadata associated when
duplicate deviceDeploymentIDs are encountered.

overlapStrategy

Strategy to use when data found in time series overlaps.

Value

A combined mts_monitor object. (A list with meta and data dataframes.)

Note

Data are combined with a "later is better" sensibility where any data overlaps exist. Incoming
mts_monitor objects are ordered based on the time stamp of their last record. Any data records
found in a "later" mts_monitor will overwrite data associated with an "earlier" mts_monitor.

With overlapStrategy = "replace all", any data records found in "later" mts_monitor objects
are preferentially retained before the "shared" data are finally reordered by ascending datetime.

With overlapStrategy = "replace missing", only missing values in "earlier" mts_monitor ob-
jects are replaced with data records from "later" time series.

Examples

library(AirMonitor)

Two monitors near Pendelton, Oregon
#
Use the interactive map to get the deviceDeploymentIDs
NW_Megafires %>% monitor_leaflet()

Pendleton_West <-
NW_Megafires %>%
monitor_select("f187226671d1109a_410590121_03") %>%
monitor_filterDatetime(2015082300, 2015082305)

Pendleton_East <-
NW_Megafires %>%
monitor_select("6c906c6d1cf46b53_410597002_02") %>%
monitor_filterDatetime(2015082300, 2015082305)

monitor_combine(Pendleton_West, Pendleton_East) %>%

monitor_dailyBarplot 29

monitor_getData()

monitor_dailyBarplot Create daily barplot

Description

Creates a daily barplot of data from a mts_monitor object.

Reasonable defaults are chosen for annotations and plot characteristics. Users can override any
defaults by passing in parameters accepted by graphics::barplot.

Usage

monitor_dailyBarplot(
monitor = NULL,
id = NULL,
add = FALSE,
addAQI = FALSE,
palette = c("EPA", "subdued", "deuteranopia"),
opacity = NULL,
minHours = 18,
dayBoundary = c("clock", "LST"),
NAAQS = c("PM2.5_2024", "PM2.5"),
...

)

Arguments

monitor mts_monitor object.

id deviceDeploymentID for a single time series found in monitor. (Optional if
monitor contains only a single time series.)

add Logical specifying whether to add to the current plot.

addAQI Logical specifying whether to add visual AQI decorations.

palette Named color palette to use when adding AQI decorations.

opacity Opacity to use for bars.

minHours Minimum number of valid hourly records per day required to calculate statistics.
Days with fewer valid records will be assigned NA.

dayBoundary Treatment of daylight savings time: "clock" uses daylight savings time as de-
fined in the local timezone, "LST" uses "local standard time" all year round.

NAAQS Version of NAAQS levels to use. See Note.

... Additional arguments to be passed to graphics::barplot().

30 monitor_dailyStatistic

Value

No return value. This function is called to draw an air quality daily average plot on the active
graphics device.

Note

The underlying axis for this plot is not a time axis so you cannot use this function to "add" bars on
top of a monitor_timeseriesPlot(). See the AirMonitorPlots package for more flexibility in
plotting.

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

Examples

library(AirMonitor)

layout(matrix(seq(2)))

Carmel_Valley %>% monitor_dailyBarplot()
title("(pre-2024 PM NAAQS)", line = 0)

Carmel_Valley %>% monitor_dailyBarplot(NAAQS = "PM2.5_2024")
title("(updated PM NAAQS)", line = 0)

layout(1)

monitor_dailyStatistic

Create daily statistics for each monitor in an mts_monitor object

Description

Daily statstics are calculated for each time series in monitor$data using FUN and any arguments
passed in

Because the returned mts_monitor object is defined on a daily axis in a specific time zone, it is
important that the incoming monitor contain timeseries associated with a single time zone.

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

monitor_dailyStatistic 31

Usage

monitor_dailyStatistic(
monitor = NULL,
FUN = mean,
na.rm = TRUE,
minHours = 18,
dayBoundary = c("clock", "LST"),
...

)

Arguments

monitor mts_monitor object.

FUN Function used to create daily statistics.

na.rm Value passed on to FUN. If FUN does not use na.rm, this should be set to NULL.

minHours Minimum number of valid hourly records per day required to calculate statistics.
Days with fewer valid records will be assigned NA.

dayBoundary Treatment of daylight savings time: "clock" uses daylight savings time as de-
fined in the local timezone, "LST" uses "local standard time" all year round.

... Additional arguments to be passed to FUN.

Value

A mts_monitor object containing daily statistical summaries. (A list with meta and data dataframes.)

Note

When dayBoundary = "clock", the returned monitor$data$datetime time axis will be defined
in the local timezone (not "UTC") with days defined by midnight as it appears on a clock in that
timezone. The transition from DST to standard time will result in a 23 hour day and standard to
DST in a 25 hour day.

When dayBoundary = "LST", the returned monitor$data$datetime time axis will be defined in
"UTC" with times as they appear in standard time in the local timezone. These days will be one
hour off from clock time during DST but every day will consist of 24 hours.

Examples

library(AirMonitor)

Carmel_Valley %>%
monitor_dailyStatistic(max) %>%
monitor_getData()

Carmel_Valley %>%
monitor_dailyStatistic(min) %>%
monitor_getData()

32 monitor_dailyThreshold

monitor_dailyThreshold

Daily counts of values at or above a threshold

Description

Calculates the number of hours per day each time series in monitor was at or above a given thresh-
old.

Because the returned mts_monitor object is defined on a daily axis in a specific time zone, it is
important that the incoming monitor contain only timeseries within a single time zone.

Usage

monitor_dailyThreshold(
monitor = NULL,
threshold = NULL,
na.rm = TRUE,
minHours = 18,
dayBoundary = c("clock", "LST"),
NAAQS = c("PM2.5_2024", "PM2.5")

)

Arguments

monitor mts_monitor object.

threshold AQI level name (e.g. "unhealthy") or numerical threshold at and above which
a measurement is counted.

na.rm Logical value indicating whether NA values should be ignored.

minHours Minimum number of valid hourly records per day required to calculate statistics.
Days with fewer valid records will be assigned NA.

dayBoundary Treatment of daylight savings time: "clock" uses daylight savings time as de-
fined in the local timezone, "LST" uses "local standard time" all year round.

NAAQS Version of NAAQS levels to use. See Note.

Value

A mts_monitor object containing daily counts of hours at or above a threshold value. (A list with
meta and data dataframes.)

Note

When dayBoundary = "clock", the returned monitor$data$datetime time axis will be defined
in the local timezone (not "UTC") with days defined by midnight as it appears on a clock in that
timezone. The transition from DST to standard time will result in a 23 hour day and standard to
DST in a 25 hour day.

monitor_distinct 33

When dayBoundary = "LST", the returned monitor$data$datetime time axis will be defined in
"UTC" with times as they appear in standard time in the local timezone. These days will be one
hour off from clock time during DST but every day will consist of 24 hours.

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

Examples

library(AirMonitor)

Hours at MODERATE or above
Carmel_Valley %>%

monitor_dailyThreshold("Moderate") %>%
monitor_getData()

Hours at MODERATE or above with the 2024 updated NAAQS
Carmel_Valley %>%

monitor_dailyThreshold("Moderate", NAAQS = "PM2.5_2024") %>%
monitor_getData()

Hours at UNHEALTHY or above
Carmel_Valley %>%

monitor_dailyThreshold("Unhealthy") %>%
monitor_getData()

monitor_distinct Retain only distinct data records in monitor$data

Description

Two successive steps are used to guarantee that the datetime axis contains no repeated values:

1. remove any duplicate records

2. guarantee that rows are in datetime order

Usage

monitor_distinct(monitor)

Arguments

monitor mts_monitor object

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

34 monitor_dygraph

Value

A mts_monitor object with no duplicated data records. (A list with meta and data dataframes.)

Note

This function is primarily for package-internal use.

monitor_dropEmpty Drop device deployments with all missing data

Description

The incoming mts_monitor object is subset to retain only time series with valid data.

Usage

monitor_dropEmpty(monitor)

Arguments

monitor mts_monitor object. (A list with meta and data dataframes.)

Value

A subset of the incoming mts_monitor. (A list with meta and data dataframes.)

monitor_dygraph Create Interactive Time Series Plot

Description

This function creates interactive graphs that will be displayed in RStudio’s ’Viewer’ tab.

Usage

monitor_dygraph(
monitor,
title = "title",
ylab = "PM2.5 Concentration",
rollPeriod = 1,
showLegend = TRUE

)

monitor_filterByDistance 35

Arguments

monitor mts_monitor object.

title Title text.

ylab Title for the y axis

rollPeriod Rolling mean to be applied to the data.

showLegend Logical to toggle display of the legend.

Value

Initiates the interactive dygraph plot in RStudio’s ’Viewer’ tab.

Examples

Not run:
library(AirMonitor)

Multiple monitors
Camp_Fire %>%

monitor_filter(countyName == "Alameda") %>%
monitor_dygraph()

End(Not run)

monitor_filterByDistance

Filter by distance from a target location

Description

Filters the monitor argument to include only those time series located within a certain radius of a
target location. If no time series fall within the specified radius, an empty mts_monitor object will
be returned.

When count is used, a mts_monitor object is created containing up to count time series, ordered
by increasing distance from the target location. Note that the number of monitors returned may be
less than the specified count value if fewer than count time series are found within the target area.

Usage

monitor_filterByDistance(
monitor,
longitude = NULL,
latitude = NULL,
radius = 50,
count = NULL,
addToMeta = FALSE

)

36 monitor_filterDate

Arguments

monitor mts_monitor object.

longitude Target longitude.

latitude Target.

radius Distance (m) of radius defining a target area.

count Number of time series to return.

addToMeta Logical specifying whether to add distanceFromTarget as a field in monitor$meta.

Value

A mts_monitor object with monitors near a location.

Note

The returned mts_monitor will have an extra distance. (A list with meta and data dataframes.)

Examples

library(AirMonitor)

Walla Walla
longitude <- -118.330278
latitude <- 46.065

Walla_Walla_monitors <-
NW_Megafires %>%
monitor_filterByDistance(
longitude = -118.330,
latitude = 46.065,
radius = 50000, # 50 km
addToMeta = TRUE

)

Walla_Walla_monitors %>%
monitor_getMeta() %>%
dplyr::select(c("locationName", "distanceFromTarget"))

monitor_filterDate Date filtering for mts_monitor objects

Description

Subsets a mts_monitor object by date. This function always filters to day-boundaries. For sub-day
filtering, use monitor_filterDatetime().

Dates can be anything that is understood by MazamaCoreUtils::parseDatetime() including ei-
ther of the following recommended formats:

monitor_filterDate 37

• "YYYYmmdd"

• "YYYY-mm-dd"

If either startdate or enddate is not provided, the start/end of the mts_monitor time axis will be
used.

Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing.

1. get timezone from startdate if it is POSIXct
2. use passed in timezone

3. get timezone from mts_monitor

Usage

monitor_filterDate(
monitor = NULL,
startdate = NULL,
enddate = NULL,
timezone = NULL,
unit = "sec",
ceilingStart = FALSE,
ceilingEnd = FALSE

)

Arguments

monitor mts_monitor object.
startdate Desired start datetime (ISO 8601).
enddate Desired end datetime (ISO 8601).
timezone Olson timezone used to interpret dates.
unit Units used to determine time at end-of-day.
ceilingStart Logical instruction to apply ceiling_date to the startdate rather than floor_date

ceilingEnd Logical instruction to apply ceiling_date to the enddate rather than floor_date

Value

A subset of the given mts_monitor object. (A list with meta and data dataframes.)

Note

The returned data will run from the beginning of startdate until the beginning of enddate – i.e.
no values associated with enddate will be returned. The exception being when enddate is less than
24 hours after startdate. In that case, a single day is returned.

See Also

monitor_filterDatetime

monitor_filterMeta

38 monitor_filterDatetime

Examples

library(AirMonitor)

Camp_Fire %>%
monitor_timeRange()

Day boundaries returned in "UTC"
Camp_Fire %>%

monitor_filterDate(
"2018-11-15",
"2018-11-22",
timezone = "America/Los_Angeles"

) %>%
monitor_timeRange()

Day boundaries returned in "America/Los_Angeles"
Camp_Fire %>%

monitor_filterDatetime(
"20181115",
"20181122",
timezone = "America/Los_Angeles"

) %>%
monitor_timeRange(

timezone = "America/Los_Angeles"
)

monitor_filterDatetime

Datetime filtering for mts_monitor objects

Description

Subsets a mts_monitor object by datetime. This function allows for sub-day filtering as opposed to
monitor_filterDate() which always filters to day-boundaries.

Datetimes can be anything that is understood by MazamaCoreUtils::parseDatetime(). For non-
POSIXct values, the recommended format is "YYYY-mm-dd HH:MM:SS".

If either startdate or enddate is not provided, the start/end of the mts_monitor time axis will be
used.

Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing.

1. get timezone from startdate if it is POSIXct

2. use passed in timezone

3. get timezone from mts_monitor

monitor_filterDatetime 39

Usage

monitor_filterDatetime(
monitor = NULL,
startdate = NULL,
enddate = NULL,
timezone = NULL,
unit = "sec",
ceilingStart = FALSE,
ceilingEnd = FALSE

)

Arguments

monitor mts_monitor object.

startdate Desired start datetime (ISO 8601).

enddate Desired end datetime (ISO 8601).

timezone Olson timezone used to interpret startdate and enddate.

unit Units used to determine time at end-of-day.

ceilingStart Logical specifying application of ceiling_date to the startdate rather than
floor_date

ceilingEnd Logical specifying application of ceiling_date to the enddate rather than
floor_date

Value

A subset of the given mts_monitor object. (A list with meta and data dataframes.)

See Also

monitor_filterDate

monitor_filterMeta

Examples

library(AirMonitor)

Camp_Fire %>%
monitor_timeRange()

Reduced time range returned in "UTC"
Camp_Fire %>%

monitor_filterDatetime(
"2018-11-15 02:00:00",
"2018-11-22 06:00:00",
timezone = "America/Los_Angeles"

) %>%
monitor_timeRange()

40 monitor_filterMeta

Reduced time range returned in "America/Los_Angeles"
Camp_Fire %>%

monitor_filterDatetime(
"2018111502",
"2018112206",
timezone = "America/Los_Angeles"

) %>%
monitor_timeRange(

timezone = "America/Los_Angeles"
)

monitor_filterMeta General purpose metadata filtering for mts_monitor objects

Description

A generalized metadata filter for mts_monitor objects to choose cases where conditions are true.
Multiple conditions are combined with & or separated by a comma. Only rows where the con-
dition evaluates to TRUE are kept. Rows of monitor$meta where the condition evaluates to NA
are dropped. Associated olumns of monitor$data are also dropped for internal consistency in the
returned mts_monitor object.

monitor_filter() is an alias for monitor_filterMeta().

Usage

monitor_filterMeta(monitor, ...)

monitor_filter(monitor, ...)

Arguments

monitor mts_monitor object.

... Logical predicates defined in terms of the variables in monitor$meta.

Value

A subset of the incoming mts_monitor. (A list with meta and data dataframes.)

Note

Filtering is done on variables in monitor$meta.

See Also

monitor_filterDate

monitor_filterDatetime

monitor_fromPWFSLSmoke 41

Examples

library(AirMonitor)

Filter based on countyName field
Camp_Fire %>%

monitor_filter(countyName == "Alameda") %>%
monitor_timeseriesPlot(main = "All Alameda County Monitors")

Filter combining two fields
Camp_Fire %>%

monitor_filter(latitude > 39.5, longitude > -121.5) %>%
monitor_pull("locationName")

Filter using string matching
Camp_Fire %>%

monitor_filter(stringr::str_detect(locationName, "^San")) %>%
monitor_pull("locationName")

monitor_fromPWFSLSmoke

Convert a ws_monitor object from the PWFSLSmoke package

Description

A PWFSLSmoke package ws_monitor object is enhanced and modified so that it becomes a valid
mts_monitor object. This is a lossless operation and can be reversed with monitor_toPWFSLSmoke().

Usage

monitor_fromPWFSLSmoke(ws_monitor = NULL)

Arguments

ws_monitor ws_monitor object. (A list with meta and data dataframes.)

Value

A mts_monitor object.

42 monitor_getCurrentStatus

monitor_getCurrentStatus

Get current status of monitors

Description

This function augments monitor$meta with summary information derived from monitor$data
reflecting recent measurements.

Usage

monitor_getCurrentStatus(
monitor,
enddate = NULL,
minHours = 18,
dayBoundary = c("clock", "LST")

)

Arguments

monitor mts_monitor object.

enddate Time relative to which current status is calculated. By default, it is the latest
time in monitor$data$datetime. This time can be given as a POSIXct time,
or a string/numeric value in ymd format (e.g. 20190301). This time converted
to UTC.

minHours Minimum number of valid hourly records required to calculate yesterday_PM2.5_avg.
Days with fewer valid records will be assigned NA.

dayBoundary Treatment of daylight savings time: "clock" uses daylight savings time as de-
fined in the local timezone, "LST" uses "local standard time" all year round.
(See monitor_dailyStatistic() for more details.)

Value

The monitor$meta table augmented with current status information for each time series.

"Last" and "Previous"

The goal of this function is to provide useful information about what happened recently with each
time series in the provided mts_monitor object. Devices don’t always consistently report data,
however, and it is not alwlays useful to have NA’s reported when there is recent valid data at earlier
times. To address this, monitor_getCurrentStatus() uses last and previous valid times. These
are the time when a monitor most recently reported data, and the most recent time of valid data
before that, respectively. By reporting on these times, this function ensures that valid data is returned
and provides information on how outdated this information is. This information can be used in maps
to show AQI colored dots when data is only a few hours old but gray dots when data is older than
some threshold.

monitor_getCurrentStatus 43

Calculating latency

According to https://docs.airnowapi.org/docs/HourlyDataFactSheet.pdf a datum assigned to 2pm
represents the average of data between 2pm and 3pm. So, if we check at 3:15pm and see that we
have a value for 2pm but not 3pm then the data are completely up-to-date with zero latency.

monitor_getCurrentStatus() defines latency as the difference between a time index and the next
most recent time index associated with a valid value. If there is no more recent time index, then the
difference is measured to the given enddate parameter. Because mts_monitor objects are defined
on an hourly axis, these differences have units of hours.

For example, if the recorded values for a monitor are [16.2, 15.8, 16.4, NA, 14.0, 12.5, NA,
NA, 13.3, NA], then the last valid value is 13.3 with an index is 9, and the previous valid value is
12.4 with an index of 6. The last latency is then 1 (hour before the end), and the previous latency is
3 (hours before the last valid value).

Summary data

The table created by monitor_getCurrentStatus() includes per-time series summary information
calculated from monitor$data. The additional data fields added to monitor$meta are listed below:

currentStatus_processingTime Time at which this function was run

currentStatus_enddate Time relative to which "currency" is calculated

last_validIndex Row index of the last valid mesurement in monitor$data

previous_validIndex Row index of the previous valid measurement in monitor$data

last_validTime UTC time associated with last_validIndex

previous_validTime UTC time associated with previous_validIndex

last_latency Hours between last_validTime and endtime

previous_latency Hours between previous_validTime andlast_validTime

last_validLocalTimestamp Local time representation of last_validTime

previous_validLocalTimestamp Local time representation of previous_validTime

last_PM2.5 Last valid PM2.5 measurement

previous_PM2.5 Previous valid PM2.5 measurement

last_nowcast Last valid PM2.5 NowCast value

previous_nowcast Previous valid PM2.5 NowCast value

yesterday_PM2.5_avg Daily average PM2.5 for the day prior to enddate

Examples

Fail gracefully if any resources are not available
try({

library(AirMonitor)

monitor <- airnow_loadLatest()
TODO: Needed before rebuilding of v2 database with fullAQSID
monitor$meta$fullAQSID <- paste0("840", monitor$meta$AQSID)

44 monitor_getDistance

currentStatus <-
monitor %>%
monitor_filter(stateCode == "WA") %>%
monitor_getCurrentStatus()

}, silent = FALSE)

monitor_getDataFrame Extract dataframes from mts_monitor objects

Description

These functions are convenient wrappers for extracting the dataframes that comprise a mts_monitor
object. These functions are designed to be useful when manipulating data in a pipeline using %>%.

Below is a table showing equivalent operations for each function.

Function Equivalent Operation
monitor_getData(monitor) monitor$data
monitor_getMeta(monitor) monitor$meta

Usage

monitor_getData(monitor)

monitor_getMeta(monitor)

Arguments

monitor mts_monitor object to extract dataframe from.

Value

A dataframe from the given mts_monitor object.

monitor_getDistance Calculate distances from mts_monitor locations to a location of inter-
est

Description

This function returns the distances (meters) between monitor locations and a location of interest.
These distances can be used to create a mask identifying monitors within a certain radius of the
location of interest.

monitor_getDistance 45

Usage

monitor_getDistance(
monitor = NULL,
longitude = NULL,
latitude = NULL,
measure = c("geodesic", "haversine", "vincenty", "cheap")

)

Arguments

monitor mts_monitor object.

longitude Longitude of the location of interest.

latitude Latitude of the location of interest.

measure One of "geodesic", "haversine" "vincenty", or "cheap".

Value

Named vector of distances (meters) with each distance identified by deviceDeploymentID.

Note

The measure "cheap" may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap" will vary by a few meters compared with those
calculated using measure = "geodesic".

Examples

library(AirMonitor)

Walla Walla
longitude <- -118.3302
latitude <- 46.065

distance <- monitor_getDistance(NW_Megafires, longitude, latitude)
closestIndex <- which(distance == min(distance))

Distance in meters
distance[closestIndex]

Monitor core metadata
str(NW_Megafires$meta[closestIndex, AirMonitor::coreMetadataNames])

46 monitor_isValid

monitor_isEmpty Test for an empty mts_monitor object

Description

This function returns true under the following conditions:

• no time series: ncol(monitor$data) == 1

• no time series records: nrow(monitor$data) == 0

• all timeseries values are NA

This makes for more readable code in functions that need to test for this.

Usage

monitor_isEmpty(monitor)

Arguments

monitor mts_monitor object

Value

Invisibly returns TRUE if no data exist in mts_monitor, FALSE otherwise.

monitor_isValid Test mts_monitor object for correct structure

Description

The mts_monitor is checked for the presence of core meta and data columns.

Core meta columns include: (TODO: complete this list)

• deviceDeploymentID – unique identifier (see MazmaLocationUtils)
• deviceID – device identifier
• locationID – location identifier (see MazmaLocationUtils)
• locationName – English language name
• longitude – decimal degrees E
• latitude – decimal degrees N
• elevation – elevation of station in m
• countryCode – ISO 3166-1 alpha-2
• stateCode – ISO 3166-2 alpha-2
• timezone – Olson time zone

Core data columns include:

• datetime – measurement time (UTC)

monitor_leaflet 47

Usage

monitor_isValid(monitor = NULL, verbose = FALSE)

Arguments

monitor mts_monitor object

verbose Logical specifying whether to produce detailed warning messages.

Value

Invisibly returns TRUE if mts_monitor has the correct structure, FALSE otherwise.

monitor_leaflet Leaflet interactive map of monitor locations

Description

This function creates interactive maps that will be displayed in RStudio’s ’Viewer’ tab. The slice
argument is used to collapse a mts_monitor timeseries into a single value. If slice is an inte-
ger, that row index will be selected from the monitor$data dataframe. If slice is a function
(unquoted), that function will be applied to the timeseries with the argument na.rm=TRUE (e.g.
max(..., na.rm=TRUE)).

If slice is a user defined function, it will be used with argument na.rm=TRUE to collapse the time
dimension. Thus, user defined functions must accept na.rm as an argument.

Usage

monitor_leaflet(
monitor,
slice = "max",
radius = 10,
opacity = 0.7,
maptype = "terrain",
extraVars = NULL,
jitter = 5e-04,
NAAQS = c("PM2.5_2024", "PM2.5"),
...

)

Arguments

monitor mts_monitor object.

slice Either a formatted time string, a time index, the name of a (potentially user
defined) function used to collapse the time axis.

radius radius of monitor circles

48 monitor_leaflet

opacity opacity of monitor circles

maptype optional name of leaflet ProviderTiles to use, e.g. "terrain"

extraVars Character vector of additional column names from monitor$meta to be shown
in leaflet popups.

jitter Amount to use to slightly adjust locations so that multiple monitors at the same
location can be seen. Use zero or NA to see precise locations.

NAAQS Version of NAAQS levels to use. See Note.

... Additional arguments passed to leaflet::addCircleMarker().

Details

The maptype argument is mapped onto leaflet "ProviderTile" names. Current map types include:

"roadmap" – "OpenStreetMap"

"satellite" – "Esri.WorldImagery"

"terrain" – "Esri.WorldTopoMap"

"toner" – "Stamen.Toner"

If a character string not listed above is provided, it will be used as the underlying map tile if avail-
able. See https://leaflet-extras.github.io/leaflet-providers/ for a list of "provider
tiles" to use as the background map.

Value

Invisibly returns a leaflet map of class "leaflet".

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

Examples

Not run:
library(AirMonitor)
Fail gracefully if any resources are not available
try({

Maximum AQI category at each site
monitor_loadLatest() %>%

monitor_filter(stateCode %in% CONUS) %>%
monitor_leaflet()

https://leaflet-extras.github.io/leaflet-providers/
https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

monitor_load 49

Mean AQI category at each site
monitor_loadLatest() %>%

monitor_filter(stateCode %in% CONUS) %>%
monitor_leaflet(
slice = "mean"

)

Mean AQI category at each site using the updated NAAQS
monitor_loadLatest() %>%

monitor_filter(stateCode %in% CONUS) %>%
monitor_leaflet(

slice = "mean",
NAAQS = "PM2.5_2024"

)

}, silent = FALSE)

End(Not run)

monitor_load Load monitoring data from all sources

Description

Loads monitoring data for a given time range. Data from AirNow, AIRSIS and WRCC are com-
bined into a single mts_monitor object.

Archival datasets are combined with ’daily’ and ’latest’ datasets as needed to satisfy the requested
date range.

Usage

monitor_load(
startdate = NULL,
enddate = NULL,
timezone = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
epaPreference = c("airnow", "epa_aqs")

)

Arguments

startdate Desired start datetime (ISO 8601).

enddate Desired end datetime (ISO 8601).

timezone Olson timezone used to interpret dates.

50 monitor_loadAnnual

archiveBaseUrl Base URL for monitoring v2 data files.
archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values. files are available from both ‘epa‘ and
‘airnow‘.

epaPreference Preferred data source for EPA data when annual data files are available from
both ‘epa_aqs‘ and ‘airnow‘.

Value

A mts_monitor object with PM2.5 monitoring data. (A list with meta and data dataframes.)

See Also

monitor_loadAnnual

monitor_loadDaily

monitor_loadLatest

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

wa <-
monitor_load(20210601, 20211001) %>%
monitor_filter(stateCode == "WA")

monitor_timeseriesPlot(wa)

}, silent = FALSE)

End(Not run)

monitor_loadAnnual Load annual monitoring data from all sources

Description

Combine annual data from AirNow, AIRSIS and WRCC:

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

Current year files loaded by this function are updated once per week.

For the most recent data in the last 10 days, use monitor_loadLatest().

For daily updates covering the most recent 45 days, use monitor_loadDaily().

For data extended more than 45 days into the past, use monitor_load().

monitor_loadAnnual 51

Usage

monitor_loadAnnual(
year = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
epaPreference = c("airnow", "epa_aqs")

)

Arguments

year Year [YYYY].

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.

epaPreference Preferred data source for EPA data when annual data files are available from
both ‘epa_aqs‘ and ‘airnow‘.

Value

A mts_monitor object with PM2.5 monitoring data. (A list with meta and data dataframes.)

Note

This function guarantees that only a single time series will be associated with each locationID
using the following logic:

1. AirNow data takes precedence over data from AIRSIS or WRCC

2. more recent data takes precedence over older data

This relevant mostly for "temporary" monitors which may be replaced after they are initially de-
ployed. If you want access to all device deployments associated with a specific locationID, you
can use the provider specific functions: airnow_loadAnnual, airsis_loadAnnual and wrcc_loadAnnual

See Also

monitor_loadDaily

monitor_loadLatest

Examples

Not run:
library(AirMonitor)
Fail gracefully if any resources are not available
try({

52 monitor_loadDaily

monitor_loadAnnual() %>%
monitor_filter(stateCode %in% CONUS) %>%
monitor_leaflet()

}, silent = FALSE)

End(Not run)

monitor_loadDaily Load daily monitoring data from all sources

Description

Combine daily data from AirNow, AIRSIS and WRCC:

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated once per day and contain data for the previous 45 days.

For the most recent data in the last 10 days, use monitor_loadLatest().

For data extended more than 45 days into the past, use monitor_load().

Usage

monitor_loadDaily(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore")

)

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.

Value

A mts_monitor object with PM2.5 monitoring data. (A list with meta and data dataframes.)

Note

This function guarantees that only a single time series will be associated with each locationID
using the following logic:

1. AirNow data takes precedence over data from AIRSIS or WRCC

monitor_loadLatest 53

2. more recent data takes precedence over older data

This relevant mostly for "temporary" monitors which may be replaced after they are initially de-
ployed. If you want access to all device deployments associated with a specific locationID, you
can use the provider specific functions: airnow_loadDaily, airsis_loadDaily and wrcc_loadDaily

See Also

monitor_loadAnnual

monitor_loadLatest

Examples

Not run:
library(AirMonitor)
Fail gracefully if any resources are not available
try({

monitor_loadDaily() %>%
monitor_filter(stateCode %in% CONUS) %>%
monitor_leaflet()

}, silent = FALSE)

End(Not run)

monitor_loadLatest Load most recent monitoring data from all sources

Description

Combine recent data from AirNow, AIRSIS and WRCC:

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated multiple times an hour and contain data for the previous
10 days.

For daily updates covering the most recent 45 days, use monitor_loadDaily().

For data extended more than 45 days into the past, use monitor_load().

Usage

monitor_loadLatest(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore")

)

54 monitor_loadLatest

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.

QC_negativeValues

Type of QC to apply to negative values.

Value

A mts_monitor object with PM2.5 monitoring data. (A list with meta and data dataframes.)

Note

This function guarantees that only a single time series will be associated with each locationID
using the following logic:

1. AirNow data takes precedence over data from AIRSIS or WRCC

2. more recent data takes precedence over older data

This relevant mostly for "temporary" monitors which may be replaced after they are initially de-
ployed. If you want access to all device deployments associated with a specific locationID, you
can use the provider specific functions: airnow_loadLatest, airsis_loadLatest and wrcc_loadLatest

See Also

monitor_loadAnnual

monitor_loadDaily

Examples

Not run:
library(AirMonitor)
Fail gracefully if any resources are not available
try({

monitor_loadLatest() %>%
monitor_filter(stateCode %in% CONUS) %>%
monitor_leaflet()

}, silent = FALSE)

End(Not run)

monitor_mutate 55

monitor_mutate Apply a function to mts_monitor time series

Description

This function works similarly to dplyr::mutate() and applies FUN to each time series found in
monitor$data. FUN must be a function that accepts a numeric vector as its first argument and
returns a vector of the same length.

Usage

monitor_mutate(monitor = NULL, FUN = NULL, ...)

Arguments

monitor mts_monitor object.

FUN Function used to modify time series.

... Additional arguments to be passed to FUN.

Value

A modified mts_monitor object. (A list with meta and data dataframes.)

Examples

library(AirMonitor)

Carmel_Valley %>%
monitor_filterDatetime(2016080207, 2016080212) %>%
monitor_toCSV(includeMeta = FALSE) %>%
cat()

Carmel_Valley %>%
monitor_filterDatetime(2016080207, 2016080212) %>%
monitor_mutate(function(x) { return(x / 2) }) %>%
monitor_toCSV(includeMeta = FALSE) %>%
cat()

56 monitor_nowcast

monitor_nowcast Apply NowCast algorithm to mts_monitor data

Description

A NowCast algorithm is applied to the data in in the monitor object. The version argument
specifies the minimum weight factor and number of hours to be used in the calculation.

Available versions include:

1. pm: hours = 12, weight = 0.5

2. pmAsian: hours = 3, weight = 0.1

3. ozone: hours = 8, weight = NA

The default, version = "pm", is appropriate for typical usage.

Usage

monitor_nowcast(
monitor,
version = c("pm", "pmAsian", "ozone"),
includeShortTerm = FALSE

)

Arguments

monitor mts_monitor object.

version Name of the type of nowcast algorithm to be used.
includeShortTerm

Logical specifying whether to alcluate preliminary NowCast values starting with
the 2nd hour.

Details

This function calculates each hour’s NowCast value based on the value for the given hour and the
previous N-1 hours, where N is the number of hours appropriate for the version argument. For
example, if version = "pm", the NowCast value for Hour 12 is based on the data from hours 1-12.

The function returns values when at least two of the previous three hours have data. NA’s are
returned for hours where this condition is not met.

By default, the funtion will not return a valid value until the Nth hour. If includeShortTerm =
TRUE, the function will return a valid value after only the 2nd hour (provided, of course, that both
hours are valid).

Calculated Nowcast values are truncated to the nearest .1 ug/m3 for ’pm’ and nearest .001 ppm for
’ozone’ regardless of the precision of the data in the incoming mts_monitor object.

monitor_pull 57

Value

A modified mts_monitor object. (A list with meta and data dataframes.)

References

https://en.wikipedia.org/wiki/Nowcast_(Air_Quality_Index)

AQI Technical Assistance Document

monitor_pull Extract a column of metadata or data

Description

This function acts similarly to pull working on monitor$meta or monitor$data. Data are returned
as a simple array. Data are pulled from whichever dataframe contains var.

Usage

monitor_pull(monitor = NULL, var = NULL)

Arguments

monitor mts_monitor object.

var A variable name found in the meta or data dataframe of the incoming mts_monitor
time series object.

Value

An array of values.

Examples

library(AirMonitor)

Metadata
Camp_Fire %>%

monitor_pull("deploymentType") %>%
table()

Data for a specific ID
Camp_Fire %>%

monitor_dailyStatistic(mean) %>%
monitor_pull("6bbab08e3786ef66_840060450006") %>%
round(0)

Associated dates
Camp_Fire %>%

monitor_dailyStatistic(mean) %>%

https://en.wikipedia.org/wiki/Nowcast_(Air_Quality_Index)
https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf

58 monitor_replaceValues

monitor_pull("datetime")

monitor_replaceValues Replace mts_monitor data with another value

Description

Use an R expression to identify values for replacement.

The R expression given in filter is used to identify elements in monitor$data that should be
replaced. The datetime column will be retained unmodified. Typical usage would include

1. replacing negative values with 0

2. replacing unreasonably high values with NA

Expressions should use data for the left hand side of the comparison.

Usage

monitor_replaceValues(monitor = NULL, filter = NULL, value = NULL)

Arguments

monitor mts_monitor object.

filter R expression used to identify values for replacement.

value Numeric replacement value.

Value

A modified mts_monitor object. (A list with meta and data dataframes.)

Examples

library(AirMonitor)

wa <- monitor_filterMeta(NW_Megafires, stateCode == 'WA')
any(wa$data < 5, na.rm = TRUE)

wa_zero <- monitor_replaceValues(wa, data < 5, 5)
any(wa_zero$data < 5, na.rm = TRUE)

monitor_select 59

monitor_select Subset and reorder time series within an mts_monitor object

Description

This function acts similarly to dplyr::select() working on monitor$data. The returned mts_monitor
object will contain only those time series identified by id in the order specified.

This can be helpful when using faceted plot functions based on ggplot such as those found in the
AirMonitorPlots package.

Usage

monitor_select(monitor, id)

monitor_reorder(monitor, id)

Arguments

monitor mts_monitor object.

id Vector of deviceDeploymentIDs.

Value

A reordered (subset) of the incoming mts_monitor object. (A list with meta and data dataframes.)

See Also

monitor_filterMeta

monitor_selectWhere Data-based subsetting of time series within an mts_monitor object.

Description

Subsetting of monitor acts similarly to tidyselect::where() working on monitor$data. The
returned mts_monitor object will contain only those time series where FUN applied to the time series
data returns TRUE.

Usage

monitor_selectWhere(monitor, FUN)

Arguments

monitor mts_monitor object.

FUN A function applied to time series data that returns TRUE or FALSE.

60 monitor_setTimeAxis

Value

A subset of the incoming mts_monitor object. (A list with meta and data dataframes.)

See Also

monitor_select

Examples

library(AirMonitor)

Show all Camp_Fire locations
Camp_Fire$meta$locationName

Use package US_AQI data for HAZARDOUS
name <- US_AQI$names_eng[6]
threshold <- US_AQI$breaks_PM2.5[6]

Find HAZARDOUS locations
worst_sites <-

Camp_Fire %>%
monitor_selectWhere(
function(x) { any(x >= threshold, na.rm = TRUE) }

)

Show the worst locations
worst_sites$meta$locationName

monitor_setTimeAxis Extend/contract mts_monitor time series to new start and end times

Description

Extends or contracts the time range of an mts_monitor object by adding/removing time steps at
the start and end and filling any new time steps with missing values. The resulting time axis is
guaranteed to be a regular, hourly axis with no gaps using the same timezone as the incoming
mts_monitor object. This is useful when you want to place separate mts_monitor objects on the
same time axis for plotting.
If either startdate or enddate is missing, the start or end of the timeseries in monitor will be
used.

Usage

monitor_setTimeAxis(
monitor = NULL,
startdate = NULL,
enddate = NULL,
timezone = NULL

)

monitor_setTimeAxis 61

Arguments

monitor mts_monitor object.

startdate Desired start date (ISO 8601).

enddate Desired end date (ISO 8601).

timezone Olson timezone used to interpret startdate and enddate.

Value

The incoming mts_monitor time series object defined on a new time axis. (A list with meta and
data dataframes.)

Note

If startdate or enddate is a POSIXct value, then timezone will be set to the timezone associated
with startdate or enddate. In this common case, you don’t need to specify timezone explicitly.

If neither startdate nor enddate is a POSIXct value AND no timezone is supplied, the timezone
will be inferred from the most common timezone found in monitor.

Examples

library(AirMonitor)

Default range
Carmel_Valley %>%

monitor_timeRange()

One-sided extend with user specified timezone
Carmel_Valley %>%

monitor_setTimeAxis(enddate = 20160820, timezone = "UTC") %>%
monitor_timeRange()

Two-sided extend with user specified timezone
Carmel_Valley %>%

monitor_setTimeAxis(20190720, 20190820, timezone = "UTC") %>%
monitor_timeRange()

Two-sided extend without timezone (uses monitor$meta$timezone)
Carmel_Valley %>%

monitor_setTimeAxis(20190720, 20190820) %>%
monitor_timeRange()

62 monitor_slice_head

monitor_slice_head Subset time series based on their position within an mts_monitor ob-
ject

Description

An mts_monitor object is reduced so as to contain only the first or last n timeseries. These functions
work similarly to dplyr::slice_head and dplyr::slice_tail but apply to both dataframes in
the mts_monitor object.
This is primarily useful when the mts_monitor object has been ordered by a previous call to monitor_arrange
or by some other means.
monitor_slice_head() selects the first and monitor_slice_tail() the last timeseries in the
object.

Usage

monitor_slice_head(monitor, n = 5)

monitor_slice_tail(monitor, n = 5)

Arguments

monitor mts_monitor object.
n Number of rows of monitor$meta to select.

Value

A subset of the incoming mts_monitor time series object. (A list with meta and data dataframes.)

Examples

library(AirMonitor)

Find lowest elevation sites
Camp_Fire %>%

monitor_filter(!is.na(elevation)) %>%
monitor_arrange(elevation) %>%
monitor_slice_head(n = 5) %>%
monitor_getMeta() %>%
dplyr::select(elevation, locationName)

Find highest elevation sites
Camp_Fire %>%

monitor_filterMeta(!is.na(elevation)) %>%
monitor_arrange(elevation) %>%
monitor_slice_tail(n = 5) %>%
monitor_getMeta() %>%
dplyr::select(elevation, locationName)

monitor_timeInfo 63

monitor_timeInfo Get time related information for a monitor

Description

Calculate the local time for a monitor, as well as sunrise, sunset and solar noon times, and create
several temporal masks.

The returned dataframe will have as many rows as the length of the incoming UTC time vector and
will contain the following columns:

• localStdTime_UTC – UTC representation of local standard time

• daylightSavings – logical mask = TRUE if daylight savings is in effect

• localTime – local clock time

• sunrise – time of sunrise on each localTime day

• sunset – time of sunset on each localTime day

• solarnoon – time of solar noon on each localTime day

• day – logical mask = TRUE between sunrise and sunset

• morning – logical mask = TRUE between sunrise and solarnoon

• afternoon – logical mask = TRUE between solarnoon and sunset

• night – logical mask = opposite of day

Usage

monitor_timeInfo(monitor = NULL, id = NULL)

Arguments

monitor mts_monitor object.

id deviceDeploymentID used to select a single time series found in monitor. –
optional if monitor only has one time series.

Details

While the lubridate package makes it easy to work in local timezones, there is no easy way in R to
work in "Local Standard Time" (LST) (i.e. never shifting to daylight savings) as is often required
when working with air quality data. US EPA regulations mandate that daily averages be calculated
based on LST.

The localStdTime_UTC is primarily for use internally and provides an important tool for creating
LST daily averages and LST axis labeling.

Value

A dataframe with times and masks.

64 monitor_timeRange

Examples

library(AirMonitor)

carmel <-
Carmel_Valley %>%
monitor_filterDate(20160801, 20160810)

Create timeInfo object for this monitor
ti <- monitor_timeInfo(carmel)

Subset the data based on day/night masks
data_day <- carmel$data[ti$day,]
data_night <- carmel$data[ti$night,]

Build two monitor objects
carmel_day <- list(meta = carmel$meta, data = data_day)
carmel_night <- list(meta = carmel$meta, data = data_night)

Plot them
carmel_day %>%

monitor_timeseriesPlot(
pch = 8,
col = "goldenrod",
shadedNight = TRUE

)

carmel_night %>%
monitor_timeseriesPlot(

add = TRUE,
pch = 16,
col = "darkblue"

)

monitor_timeRange Get the time range for a monitor

Description

This function is a wrapper for range(monitor$data$datetime) and is convenient for use in data
pipelines.

Dates will be returned in the timezone associated with monitor$data$datetime which is typically
"UTC" unless timezone is specified.

Usage

monitor_timeRange(monitor = NULL, timezone = NULL)

monitor_timeseriesPlot 65

Arguments

monitor mts_monitor object.

timezone Olson timezone for the returned dates.

Value

A vector containing the minimum and maximum times of a mts_monitor object.

Examples

Carmel_Valley %>%
monitor_timeRange(timezone = "America/Los_Angeles")

monitor_timeseriesPlot

Create timeseries plot

Description

Creates a time series plot of data from a mts_monitor object. By default, points are plotted as
semi-transparent squares. All data values are plotted from all monitors found in the mts_monitor
object.

Reasonable defaults are chosen for annotations and plot characteristics. Users can override any
defaults by passing in parameters accepted by graphics::plot.default.

Usage

monitor_timeseriesPlot(
monitor = NULL,
id = NULL,
shadedNight = FALSE,
add = FALSE,
addAQI = FALSE,
palette = c("EPA", "subdued", "deuteranopia"),
opacity = NULL,
NAAQS = c("PM2.5_2024", "PM2.5"),
...

)

Arguments

monitor mts_monitor object.

id deviceDeploymentID used to limit plotting to a single time series found in
monitor.

shadedNight Logical specifying whether to add nighttime shading.

add Logical specifying whether to add to the current plot.

66 monitor_timeseriesPlot

addAQI Logical specifying whether to add visual AQI decorations.

palette Named color palette to use when adding AQI decorations.

opacity Opacity to use for points. By default, an opacity is chosen based on the number
of points so that trends are highlighted while outliers diminish in visual impor-
tance as the number of points increases.

NAAQS Version of NAAQS levels to use. See Note.

... Additional arguments to be passed to graphics::plot.default().

Value

No return value. This function is called to draw an air quality time series plot on the active graphics
device.

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

Examples

library(AirMonitor)

Single monitor
Carmel_Valley %>%

monitor_timeseriesPlot()

Multiple monitors
Camp_Fire %>%

monitor_filter(countyName == "Alameda") %>%
monitor_timeseriesPlot(main = "All Alameda County Monitors")

Standard extras
Carmel_Valley %>%

monitor_timeseriesPlot(
shadedNight = TRUE,
addAQI = TRUE

)
addAQILegend()

Standard extras using the updated PM NAAQS
Carmel_Valley %>%

monitor_timeseriesPlot(
shadedNight = TRUE,
addAQI = TRUE,
NAAQS = "PM2.5_2024"

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

monitor_toAQCTable 67

)
addAQILegend(NAAQS = "PM2.5_2024")

Fancy plot based on pm2.5 values
pm2.5 <- Carmel_Valley$data[,2]
Carmel_Valley %>%

monitor_timeseriesPlot(
shadedNight = TRUE,
pch = 16,
cex = pmax(pm2.5 / 100, 0.5),
col = aqiColors(pm2.5),
opacity = 0.8

)
addAQILegend(pch = 16, cex = 0.6, bg = "white")

monitor_toAQCTable Convert monitor data into an AQI category table

Description

Creates a table of AQI category vs monitoring site with a count of the number of times each AQI
category was experienced at each site. The count will be a count of hours or days depending on
averaging period of the incoming monitor object.

When siteIdentifier is used, the identifiers must be in the same order as monitor$meta.

Usage

monitor_toAQCTable(
monitor,
NAAQS = c("PM2.5_2024", "PM2.5"),
siteIdentifier = "locationName"

)

Arguments

monitor mts_monitor object.

NAAQS Version of NAAQS levels to use. See Note.

siteIdentifier Metadata column used to identify sites or a character vector with site identifiers.

Value

Table of AQI category counts.

68 monitor_toCSV

Note

On February 7, 2024, EPA strengthened the National Ambient Air Quality Standards for Particulate
Matter (PM NAAQS) to protect millions of Americans from harmful and costly health impacts,
such as heart attacks and premature death. Particle or soot pollution is one of the most dangerous
forms of air pollution, and an extensive body of science links it to a range of serious and sometimes
deadly illnesses. EPA is setting the level of the primary (health-based) annual PM2.5 standard at
9.0 micrograms per cubic meter to provide increased public health protection, consistent with the
available health science. See PM NAAQS update.

Examples

library(AirMonitor)

Lane County, Oregon AQSIDs all begin with "41039"
LaneCounty <-

NW_Megafires %>%
monitor_filter(stringr::str_detect(AQSID, '^41039')) %>%
monitor_filterDate(20150801, 20150901)

Count of hours each site spent in each AQ category in August
LaneCounty %>%

monitor_toAQCTable()

Count of days each site spent in each AQ
LaneCounty %>%

monitor_dailyStatistic(mean) %>%
monitor_toAQCTable()

Count of days each site spent in each AQ (simplified names)
siteNames <- c(

"Eugene 1", "Eugene 2", "Eugene 3",
"Springfield", "Oakridge", "Cottage Grove"

)
LaneCounty %>%

monitor_dailyStatistic(mean) %>%
monitor_toAQCTable(siteIdentifier = siteNames)

Count of days at each AQ level with the new, 2024 NAAQS
LaneCounty %>%

monitor_dailyStatistic(mean) %>%
monitor_toAQCTable(NAAQS = "PM2.5_2024")

monitor_toCSV Convert monitor data as CSV

https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm

monitor_toPWFSLSmoke 69

Description

Converts the contents of the monitor argument to CSV. By default, the output is a text string with
"human readable" CSV that includes both meta and data. When saved as a file, this format is useful
for point-and-click spreadsheet users who want to have everything on a single sheet.

To obtain a machine parseable CSV string for just the data, you can use includeMeta = FALSE. To
obtain machine parseable metadata, use includeData = FALSE.

Usage

monitor_toCSV(monitor, includeMeta = TRUE, includeData = TRUE)

Arguments

monitor mts_monitor object.

includeMeta Logical specifying whether to include monitor$meta.

includeData Logical specifying whether to include monitor$data.

Value

CSV formatted text.

Examples

library(AirMonitor)

monitor <-
Carmel_Valley %>%
monitor_filterDate(20160802, 20160803)

monitor_toCSV(monitor) %>% cat()
monitor_toCSV(monitor, includeData = FALSE) %>% cat()
monitor_toCSV(monitor, includeMeta = FALSE) %>% cat()

monitor_toPWFSLSmoke Convert a mts_monitor object to a ws_monitor object for the PWF-
SLSmoke package

Description

A mts_monitor object is modified so that it becomes a PWFSLSmoke package ws_monitor object.
While some information will be lost, this operation can be reversed with monitor_fromPWFSLSmoke().

Usage

monitor_toPWFSLSmoke(monitor = NULL)

70 monitor_trimDate

Arguments

monitor mts_monitor object

Value

A PWFSLSmoke ws_monitor object. (A list with meta and data dataframes.)

Note

In order to avoid duplicated monitorID values in the returned ws_monitor object, the full deviceDeploymentID
will be used as the monitorID.

monitor_trimDate Trim a mts_monitor object to full days

Description

Trims the date range of a mts_monitor object to local time date boundaries which are within the
range of data. This has the effect of removing partial-day data records at the start and end of the
timeseries and is useful when calculating full-day statistics.

By default, multi-day periods of all-missing data at the beginning and end of the timeseries are
removed before trimming to date boundaries. If trimEmptyDays = FALSE all records are retained
except for partial days beyond the first and after the last date boundary.

Day boundaries are calculated using the specified timezone or, if NULL, from monitor$meta$timezone.

Usage

monitor_trimDate(monitor = NULL, timezone = NULL, trimEmptyDays = TRUE)

Arguments

monitor mts_monitor object.

timezone Olson timezone used to interpret dates.

trimEmptyDays Logical specifying whether to remove days with no data at the beginning and
end of the time range.

Value

A subset of the given mts_monitor object. (A list with meta and data dataframes.)

NW_Megafires 71

Examples

library(AirMonitor)

Non-day boundaries
monitor <-

Camp_Fire %>%
monitor_filterDatetime(
"2018111502",
"2018112206",
timezone = "America/Los_Angeles"

)

monitor %>%
monitor_timeRange(timezone = "America/Los_Angeles")

Trim to full days only
monitor %>%

monitor_trimDate() %>%
monitor_timeRange(timezone = "America/Los_Angeles")

NW_Megafires NW_Megafires example dataset

Description

The NW_Megafires dataset provides a quickly loadable version of a mts_monitor object for practic-
ing and code examples.

Usage

NW_Megafires

Format

A mts_monitor object with 1080 rows and 143 columns of data.

Details

In the summer of 2015, Washington state had several catastrophic wildfires that led to many days
of heavy smoke in eastern Washington, Oregon and northern Idaho. The NW_Megafires dataset
contains monitoring data for the Pacific Northwest from July 24 through September 06, 2015.

This dataset was generated on 2022-10-28 by running:

library(AirMonitor)

NW_Megafires <-
monitor_loadAnnual(2015, epaPreference = "epa_aqs")

72 QC_invalidateConsecutiveSuspectValues

monitor_filterMeta(stateCode
monitor_filterDate(20150724, 20150907, timezone = "America/Los_Angeles")
monitor_dropEmpty()

save(NW_Megafires, file = "data/NW_Megafires.rda")

pollutantNames Names of standard pollutants

Description

Character string identifiers of recognized pollutant names.

Usage

pollutantNames

Format

A vector of character strings

Details

pollutantNames

Examples

print(coreMetadataNames, width = 80)

QC_invalidateConsecutiveSuspectValues

Invalidate consecutive suspect values.

Description

Invalidates values within a timeseries that appear "sticky". Some temporary monitoring data has
stretches of consecutive values, sometimes well outside the range of reasonable. This QC function
identifies these "sticky" stretches and returns the original timeseries data with "sticky" stretches
replaced with NA.

Usage

QC_invalidateConsecutiveSuspectValues(
x = NULL,
suspectValues = c(0:10 * 1000, NA),
consecutiveCount = 2

)

US_52 73

Arguments

x Timeseries data.

suspectValues Vector of numeric values considered suspect.
consecutiveCount

How many suspectValues must appear in a row before they are invalidated.

Value

Returns x with some values potentially replaced with NA.

US_52 US state codes

Description

State codes for the 50 states +DC +PR (Puerto Rico).

US_52 <- c("AK","AL","AZ","AR","CA","CO","CT","DE","FL","GA", "HI","ID","IL","IN","IA","KS","KY","LA","ME","MD",
"MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ", "NM","NY","NC","ND","OH","OK","OR","PA","RI","SC",
"SD","TN","TX","UT","VT","VA","WA","WV","WI","WY", "DC","PR")

Usage

US_52

Format

A vector with 52 elements

Details

US state codes

US_AQI US EPA AQI Index levels, names, colors and action text

Description

Official, US EPA AQI levels, names, colors and action text are provided in a list for easy coloring
and labeling.

Usage

US_AQI

74 US_AQI

Format

A list with named elements

Details

AQI breaks and associated names and colors

Breaks

Breakpoints are given in units reported for each parameter and include:

• breaks_AQI

• breaks_CO

• breaks_NO2

• breaks_OZONE_1hr

• breaks_OZONE_8hr

• breaks_PM2.5

• breaks_PM10

Colors

Several different color palettes are provided:

• colors_EPA – official EPA AQI colors

• colors_subdued – subdued colors fo use with leaflet maps

• colors_deuteranopia – color vision impaired colors

Names

Names of AQI categories are provided in several languages identified by the ISO 639-2 alpha-3
code:

• names_eng

• names_spa

Actions

Text for "actions to protect yourself" are provided for each category in several languages identified
by the ISO 639-2 alpha-3 code:

• actions_eng

• actions_spa

Currently supported languages include English (eng) and Spanish (spa).

AQI breaks and colors are defined at https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.
pdf and are given in units appropriate for each pollutant.

https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf
https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf

wrcc_loadAnnual 75

Note

The low end of each break category is used as the breakpoint.

Examples

print(US_AQI$breaks_AQI)
print(US_AQI$colors_EPA)
print(US_AQI$names_eng)
print(US_AQI$names_spa)

wrcc_loadAnnual Load annual WRCC monitoring data

Description

Loads pre-generated .rda files containing annual WRCC data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

Current year files loaded by this function are updated once per week.

For the most recent data in the last 10 days, use wrcc_loadLatest().

For daily updates covering the most recent 45 days, use wrcc_loadDaily().

Usage

wrcc_loadAnnual(
year = NULL,
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
QC_removeSuspectData = TRUE

)

Arguments

year Year [YYYY].

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.
QC_removeSuspectData

Removes monitors determined to be misbehaving.

Value

A mts_monitor object with WRCC data. (A list with meta and data dataframes.)

76 wrcc_loadDaily

Note

Some older WRCC timeseries contain only values of 0, 1000, 2000, 3000, ... ug/m3. Data from
these deployments pass instrument-level QC checks but these timeseries generally do not repre-
sent valid data and should be removed. With QC_removeSuspectData = TRUE (the default), data is
checked and periods reporting only values of 0:10 * 1000 ug/m3 are invalidated.

Only those personally familiar with the individual instrument deployments should work with the
"suspect" data.

See Also

wrcc_loadDaily

wrcc_loadLatest

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

See https://en.wikipedia.org/wiki/Snake_River_Complex_Fire

WRCC monitors during the Snake River Complex Fire
wrcc_loadAnnual(2021) \

monitor_filter(stateCode \
monitor_filterDate(20210707, 20210820, timezone = "America/Denver") \
monitor_timeseriesPlot(
ylim = c(0, 300),
xpd = NA,
addAQI = TRUE,
main = "WRCC monitors during Snake River Complex Fire"

)

}, silent = FALSE)

End(Not run)

wrcc_loadDaily Load daily WRCC monitoring data

Description

Loads pre-generated .rda files containing daily WRCC data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated once per day and contain data for the previous 45 days.

wrcc_loadDaily 77

For the most recent data in the last 10 days, use wrcc_loadLatest().

For data extended more than 45 days into the past, use wrcc_loadAnnual().

Usage

wrcc_loadDaily(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
QC_removeSuspectData = TRUE

)

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.
QC_negativeValues

Type of QC to apply to negative values.
QC_removeSuspectData

Removes monitors determined to be misbehaving.

Value

A mts_monitor object with WRCC data. (A list with meta and data dataframes.)

Note

Some older WRCC timeseries contain only values of 0, 1000, 2000, 3000, ... ug/m3. Data from
these deployments pass instrument-level QC checks but these timeseries generally do not repre-
sent valid data and should be removed. With QC_removeSuspectData = TRUE (the default), data is
checked and periods reporting only values of 0:10 * 1000 ug/m3 are invalidated.

Only those personally familiar with the individual instrument deployments should work with the
"suspect" data.

See Also

wrcc_loadAnnual

wrcc_loadDaily

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

wrcc_loadDaily() \

78 wrcc_loadLatest

monitor_leaflet()

}, silent = FALSE)

End(Not run)

wrcc_loadLatest Load most recent WRCC monitoring data

Description

Loads pre-generated .rda files containing the most recent WRCC data.

If archiveDataDir is defined, data will be loaded from this local archive. Otherwise, data will be
loaded from the monitoring data repository maintained by the USFS AirFire team.

The files loaded by this function are updated multiple times an hour and contain data for the previous
10 days.

For daily updates covering the most recent 45 days, use wrcc_loadDaily().

For data extended more than 45 days into the past, use wrcc_loadAnnual().

Usage

wrcc_loadLatest(
archiveBaseUrl = paste0("https://airfire-data-exports.s3.us-west-2.amazonaws.com/",

"monitoring/v2"),
archiveBaseDir = NULL,
QC_negativeValues = c("zero", "na", "ignore"),
QC_removeSuspectData = TRUE

)

Arguments

archiveBaseUrl Base URL for monitoring v2 data files.

archiveBaseDir Local base directory for monitoring v2 data files.

QC_negativeValues

Type of QC to apply to negative values.

QC_removeSuspectData

Removes monitors determined to be misbehaving.

Value

A mts_monitor object with WRCC data. (A list with meta and data dataframes.)

wrcc_loadLatest 79

Note

Some older WRCC timeseries contain only values of 0, 1000, 2000, 3000, ... ug/m3. Data from
these deployments pass instrument-level QC checks but these timeseries generally do not repre-
sent valid data and should be removed. With QC_removeSuspectData = TRUE (the default), data is
checked and periods reporting only values of 0:10 * 1000 ug/m3 are invalidated.

Only those personally familiar with the individual instrument deployments should work with the
"suspect" data.

See Also

wrcc_loadAnnual

wrcc_loadDaily

Examples

Not run:
library(AirMonitor)

Fail gracefully if any resources are not available
try({

wrcc_loadLatest() \
monitor_leaflet()

}, silent = FALSE)

End(Not run)

Index

∗ datasets
AirFire_S3_archiveBaseUrl, 7
Camp_Fire, 19
Carmel_Valley, 20
CONUS, 21
coreMetadataNames, 21
NW_Megafires, 71
pollutantNames, 72
US_52, 73
US_AQI, 73

addAQILegend, 3
addAQILines, 4
addAQIStackedBar, 5
addShadedNight, 6
AirFire_S3_archiveBaseUrl, 7
airnow_loadAnnual, 7, 10, 11, 51
airnow_loadDaily, 8, 9, 11, 53
airnow_loadLatest, 8, 10, 10, 54
airnow_loadMonthly, 8, 10, 11, 11
airsis_loadAnnual, 12, 15, 16, 51
airsis_loadDaily, 13, 14, 16, 53
airsis_loadLatest, 13, 15, 15, 54
aqiCategories, 17, 19
aqiColors, 17, 18
arrange, 24

Camp_Fire, 19
Carmel_Valley, 20
ceiling_date, 37, 39
CONUS, 21
coreMetadataNames, 21

dplyr::slice_head, 62
dplyr::slice_tail, 62

epa_aqs_loadAnnual, 22

floor_date, 37, 39

legend, 4

monitor_aqi, 23
monitor_arrange, 24, 62
monitor_bestTimezone, 25
monitor_check, 25
monitor_collapse, 26
monitor_combine, 27
monitor_dailyBarplot, 29
monitor_dailyStatistic, 30
monitor_dailyThreshold, 32
monitor_distinct, 33
monitor_dropEmpty, 34
monitor_dygraph, 34
monitor_filter (monitor_filterMeta), 40
monitor_filterByDistance, 35
monitor_filterDate, 36, 39, 40
monitor_filterDatetime, 37, 38, 40
monitor_filterMeta, 37, 39, 40, 59
monitor_fromPWFSLSmoke, 41
monitor_getCurrentStatus, 42
monitor_getData (monitor_getDataFrame),

44
monitor_getDataFrame, 44
monitor_getDistance, 44
monitor_getMeta (monitor_getDataFrame),

44
monitor_isEmpty, 46
monitor_isValid, 46
monitor_leaflet, 47
monitor_load, 49
monitor_loadAnnual, 50, 50, 53, 54
monitor_loadDaily, 50, 51, 52, 54
monitor_loadLatest, 50, 51, 53, 53
monitor_mutate, 55
monitor_nowcast, 23, 56
monitor_pull, 57
monitor_reorder (monitor_select), 59
monitor_replaceValues, 58
monitor_select, 24, 59, 60
monitor_selectWhere, 59

80

INDEX 81

monitor_setTimeAxis, 60
monitor_slice_head, 62
monitor_slice_tail

(monitor_slice_head), 62
monitor_timeInfo, 63
monitor_timeRange, 64
monitor_timeseriesPlot, 4–6, 65
monitor_toAQCTable, 67
monitor_toCSV, 68
monitor_toPWFSLSmoke, 69
monitor_trimDate, 70

NW_Megafires, 71

pollutantNames, 72
pull, 57

QC_invalidateConsecutiveSuspectValues,
72

US_52, 73
US_AQI, 17, 73

wrcc_loadAnnual, 51, 75, 77, 79
wrcc_loadDaily, 53, 76, 76, 77, 79
wrcc_loadLatest, 54, 76, 78

	addAQILegend
	addAQILines
	addAQIStackedBar
	addShadedNight
	AirFire_S3_archiveBaseUrl
	airnow_loadAnnual
	airnow_loadDaily
	airnow_loadLatest
	airnow_loadMonthly
	airsis_loadAnnual
	airsis_loadDaily
	airsis_loadLatest
	aqiCategories
	aqiColors
	Camp_Fire
	Carmel_Valley
	CONUS
	coreMetadataNames
	epa_aqs_loadAnnual
	monitor_aqi
	monitor_arrange
	monitor_bestTimezone
	monitor_check
	monitor_collapse
	monitor_combine
	monitor_dailyBarplot
	monitor_dailyStatistic
	monitor_dailyThreshold
	monitor_distinct
	monitor_dropEmpty
	monitor_dygraph
	monitor_filterByDistance
	monitor_filterDate
	monitor_filterDatetime
	monitor_filterMeta
	monitor_fromPWFSLSmoke
	monitor_getCurrentStatus
	monitor_getDataFrame
	monitor_getDistance
	monitor_isEmpty
	monitor_isValid
	monitor_leaflet
	monitor_load
	monitor_loadAnnual
	monitor_loadDaily
	monitor_loadLatest
	monitor_mutate
	monitor_nowcast
	monitor_pull
	monitor_replaceValues
	monitor_select
	monitor_selectWhere
	monitor_setTimeAxis
	monitor_slice_head
	monitor_timeInfo
	monitor_timeRange
	monitor_timeseriesPlot
	monitor_toAQCTable
	monitor_toCSV
	monitor_toPWFSLSmoke
	monitor_trimDate
	NW_Megafires
	pollutantNames
	QC_invalidateConsecutiveSuspectValues
	US_52
	US_AQI
	wrcc_loadAnnual
	wrcc_loadDaily
	wrcc_loadLatest
	Index

